Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Econ Hum Biol ; 49: 101198, 2023 04.
Article in English | MEDLINE | ID: covidwho-2240357

ABSTRACT

Decisions on public health measures to contain a pandemic are often based on parameters such as expected disease burden and additional mortality due to the pandemic. Both pandemics and non-pharmaceutical interventions to fight pandemics, however, produce economic, social, and medical costs. The costs are, for example, caused by changes in access to healthcare, social distancing, and restrictions on economic activity. These factors indirectly influence health outcomes in the short- and long-term perspective. In a narrative review based on targeted literature searches, we develop a comprehensive perspective on the concepts available as well as the challenges of estimating the overall disease burden and the direct and indirect effects of COVID-19 interventions from both epidemiological and economic perspectives, particularly during the early part of a pandemic. We review the literature and discuss relevant components that need to be included when estimating the direct and indirect effects of the COVID-19 pandemic. The review presents data sources and different forms of death counts, and discusses empirical findings on direct and indirect effects of the pandemic and interventions on disease burden as well as the distribution of health risks.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , SARS-CoV-2 , Public Health , Cost of Illness
2.
Eur J Epidemiol ; 38(1): 39-58, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2234929

ABSTRACT

Current estimates of pandemic SARS-CoV-2 spread in Germany using infectious disease models often do not use age-specific infection parameters and are not always based on age-specific contact matrices of the population. They also do usually not include setting- or pandemic phase-based information from epidemiological studies of reported cases and do not account for age-specific underdetection of reported cases. Here, we report likely pandemic spread using an age-structured model to understand the age- and setting-specific contribution of contacts to transmission during different phases of the COVID-19 pandemic in Germany. We developed a deterministic SEIRS model using a pre-pandemic contact matrix. The model was optimized to fit age-specific SARS-CoV-2 incidences reported by the German National Public Health Institute (Robert Koch Institute), includes information on setting-specific reported cases in schools and integrates age- and pandemic period-specific parameters for underdetection of reported cases deduced from a large population-based seroprevalence studies. Taking age-specific underreporting into account, younger adults and teenagers were identified in the modeling study as relevant contributors to infections during the first three pandemic waves in Germany. For the fifth wave, the Delta to Omicron transition, only age-specific parametrization reproduces the observed relative and absolute increase in pediatric hospitalizations in Germany. Taking into account age-specific underdetection did not change considerably how much contacts in schools contributed to the total burden of infection in the population (up to 12% with open schools under hygiene measures in the third wave). Accounting for the pandemic phase and age-specific underreporting is important to correctly identify those groups of the population in which quarantine, testing, vaccination, and contact-reduction measures are likely to be most effective and efficient. Age-specific parametrization is also highly relevant to generate informative age-specific output for decision makers and resource planers.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Adolescent , Humans , Child , COVID-19/epidemiology , Pandemics , Seroepidemiologic Studies , Age Factors , Germany/epidemiology
3.
Eur J Health Econ ; 2022 Mar 19.
Article in English | MEDLINE | ID: covidwho-2229572

ABSTRACT

We develop a novel approach integrating epidemiological and economic models that allows data-based simulations during a pandemic. We examine the economically optimal opening strategy that can be reconciled with the containment of a pandemic. The empirical evidence is based on data from Germany during the SARS-CoV-2 pandemic. Our empirical findings reject the view that there is necessarily a conflict between health protection and economic interests and suggest a non-linear U-shape relationship: it is in the interest of public health and the economy to balance non-pharmaceutical interventions in a manner that further reduces the incidence of infections. Our simulations suggest that a prudent strategy that leads to a reproduction number of around 0.75 is economically optimal. Too restrictive policies cause massive economic costs. Conversely, policies that are too loose lead to higher death tolls and higher economic costs in the long run. We suggest this finding as a guide for policy-makers in balancing interests of public health and the economy during a pandemic.

4.
PLoS Med ; 19(12): e1003913, 2022 12.
Article in English | MEDLINE | ID: covidwho-2196852

ABSTRACT

BACKGROUND: School-level infection control measures in Germany during the early Coronavirus Disease 2019 (COVID-19) pandemic differed across the 16 federal states and lacked a dependable evidence base, with available evidence limited to regional data restricted to short phases of the pandemic. This study aimed to assess the (a) infection risks in students and staff; (b) transmission risks and routes in schools; (c) effects of school-level infection control measures on school and population infection dynamics; and (d) contribution of contacts in schools to population cases. METHODS AND FINDINGS: For this retrospective observational study, we used German federal state (NUTS-2) and county (NUTS-3) data from public health and education agencies from March 2020 to April 2022. We assessed (a) infection risk as cumulative risk and crude risk ratios and (b) secondary attack rates (SARs) with 95% confidence interval (CI). We used (c) multiple regression analysis for the effects of infection control measures such as reduced attendance, mask mandates, and vaccination coverage as absolute reduction in case incidence per 100,000 inhabitants per 14 days and in percentage relative to the population, and (d) infection dynamic modelling to determine the percentage contribution of school contacts to population cases. We included (a) nationwide NUTS-2 data from calendar weeks (W) 46-50/2020 and W08/2021-W15/2022 with 3,521,964 cases in students and 329,283 in teachers; (b) NUTS-3 data from W09-25/2021 with 85,788 student and 9,427 teacher cases; and (c) detailed data from 5 NUTS-3 regions from W09/2020 to W27/2021 with 12,814 cases (39% male, 37% female; median age 14, range 5 to 63), 43,238 contacts and 4,165 secondary cases for students (for teachers, 14,801 [22% male, 50% female; median age 39, range 16 to 75], 5,893 and 472). Infection risk (a) for students and teachers was higher than the population risk in all phases of normal presence class and highest in the early 2022 omicron wave with 30.6% (95% CI 30.5% to 32.6%) of students and 32.7% (95% CI 32.6% to 32.8%) of teachers infected in Germany. SARs (b) for students and staff were below 5% in schools throughout the study period, while SARs in households more than doubled from 13.8% (95% CI 10.6% to 17.6%) W21-39/2020 to 28.7% (95% CI 27% to 30.4%) in W08-23/2021 for students and 10.9% (95% CI 7% to 16.5%) to 32.7% (95% CI 28.2% to 37.6%) for staff. Most contacts were reported for schools, yet most secondary cases originated in households. In schools, staff predominantly infected staff. Mandatory surgical mask wearing during class in all schools was associated with a reduction in the case incidence of students and teachers (c), by 56/100,000 persons per 14 days (students: 95% CI 47.7 to 63.4; teachers: 95% CI 39.6 to 71.6; p < 0.001) and by 29.8% (95% CI 25% to 35%, p < 0.001) and 24.3% (95% CI 13% to 36%, p < 0.001) relative to the population, respectively, as were reduced attendance and higher vaccination coverage. The contribution of contacts in schools to population cases (d) was 2% to 20%, lowest during school closures/vacation and peaked during normal presence class intervals, with the overall peak early during the omicron wave. Limitations include underdetection, misclassification of contacts, interviewer/interviewee dependence of contact-tracing, and lack of individual-level confounding factors in aggregate data regression analysis. CONCLUSION: In this study, we observed that open schools under hygiene measures and testing strategies contributed up to 20% of population infections during the omicron wave early 2022, and as little as 2% during vacations/school closures; about a third of students and teachers were infected during the omicron wave in early 2022 in Germany. Mandatory mask wearing during class in all school types and reduced attendance models were associated with a reduced infection risk in schools.


Subject(s)
COVID-19 , Female , Male , Humans , Adolescent , Adult , COVID-19/epidemiology , Educational Status , Schools , Students , Germany/epidemiology
5.
BMC Infect Dis ; 22(1): 500, 2022 May 27.
Article in English | MEDLINE | ID: covidwho-1892180

ABSTRACT

BACKGROUND: There remain gaps in quantifying mortality risk among individuals co-infected with chronic hepatitis B (HBV) and human immunodeficiency virus (HIV) in sub-Saharan African contexts. Among a cohort of HIV-positive individuals in Rwanda, we estimate the difference in time-to mortality between HBV-positive (HIV/HBV co-infected) and HBV-negative (HIV mono-infected) individuals. METHODS: Using a dataset of HIV-infected adults screened for hepatitis B surface antigen (HBsAg) from January to June 2016 in Rwanda, we performed time-to-event analysis from the date of HBsAg results until death or end of study (31 December 2019). We used the Kaplan-Meier method to estimate probability of survival over time and Cox proportional hazard models to adjust for other factors associated with mortality. RESULTS: Of 21,105 available entries, 18,459 (87.5%) met the inclusion criteria. Mean age was 42.3 years (SD = 11.4) and 394 (2.1%) died during follow-up (mortality rate = 45.7 per 100,000 person-months, 95% confidence interval (CI) 41.4-50.4) Mortality rate ratio for co-infection was 1.7, 95% CI 1.1-2.6, however, Cox regression analysis did not show any association with mortality between compared groups. The adjusted analysis of covariates stratified by co-infection status showed that males, residing outside of the capital Kigali, drinking alcohol, WHO-HIV-clinical stage 3 and 4 were associated with increased mortality in this HIV cohort. CONCLUSIONS: HBV infection does not significantly influence mortality among HIV-infected individuals in Rwanda. The current cohort is likely to have survived a period of high-risk exposure to HBV and HIV mortality and limited health care until their diagnosis.


Subject(s)
Coinfection , HIV Infections , Hepatitis B, Chronic , Adult , Coinfection/complications , HIV Infections/complications , Hepatitis B Surface Antigens , Hepatitis B virus , Hepatitis B, Chronic/complications , Humans , Male , Rwanda/epidemiology
6.
Genus ; 77(1): 16, 2021.
Article in English | MEDLINE | ID: covidwho-1350158

ABSTRACT

The COVID-19 outbreak has called for renewed attention to the need for sound statistical analyses to monitor mortality patterns and trends over time. Excess mortality has been suggested as the most appropriate indicator to measure the overall burden of the pandemic in terms of mortality. As such, excess mortality has received considerable interest since the outbreak of COVID-19 began. Previous approaches to estimate excess mortality are somewhat limited, as they do not include sufficiently long-term trends, correlations among different demographic and geographic groups, or autocorrelations in the mortality time series. This might lead to biased estimates of excess mortality, as random mortality fluctuations may be misinterpreted as excess mortality. We propose a novel approach that overcomes the named limitations and draws a more realistic picture of excess mortality. Our approach is based on an established forecasting model that is used in demography, namely, the Lee-Carter model. We illustrate our approach by using the weekly age- and sex-specific mortality data for 19 countries and the current COVID-19 pandemic as a case study. Our findings show evidence of considerable excess mortality during 2020 in Europe, which affects different countries, age, and sex groups heterogeneously. Our proposed model can be applied to future pandemics as well as to monitor excess mortality from specific causes of death.

7.
Syst Rev ; 10(1): 194, 2021 06 30.
Article in English | MEDLINE | ID: covidwho-1290438

ABSTRACT

BACKGROUND: Comprehensive evidence synthesis on the associations between comorbidities and behavioural factors with hospitalisation, intensive care unit (ICU) admission, and death due to COVID-19 is required for deriving national and international recommendations on primary targets for non-pharmacological interventions (NPI) and vaccination strategies. METHODS: We performed a rapid systematic review and meta-analysis on studies and publicly accessible data to quantify associations between predisposing health conditions, demographics, behavioural factors on the one hand and hospitalisation, ICU admission, and death from COVID-19 on the other hand. We provide ranges of reported and calculated effect estimates and pooled relative risks derived from a meta-analysis and meta-regression. RESULTS: Seventy-five studies were included in qualitative and 74 in quantitative synthesis, with study populations ranging from 19 to 44,672 COVID-19 cases. The risk of dying from COVID-19 was significantly associated with cerebrovascular [pooled relative risk (RR) 2.7 (95% CI 1.7-4.1)] and cardiovascular [RR 3.2 (CI 2.3-4.5)] diseases, hypertension [RR 2.6 (CI 2.0-3.4)], and renal disease [RR 2.5 (CI 1.8-3.4)], with high heterogeneity in pooled estimates, partly but not solely explained by age of study participants. For some comorbidities, our meta-regression showed a decrease in effect on the severity of disease with a higher median age of the study population. Compared to death, associations between several comorbidities and hospitalisation and ICU admission were less pronounced. CONCLUSIONS: We obtained robust estimates on the magnitude of risk for COVID-19 hospitalisation, ICU admission, and death associated with comorbidities, demographic, and behavioural risk factors and show that these estimates are modified by age of study participants. This interaction is an important finding to be kept in mind for current vaccination strategies and for the protection of individuals with high risk for a severe COVID-19 course.


Subject(s)
COVID-19 , Comorbidity , Hospitalization , Humans , Intensive Care Units , SARS-CoV-2
8.
BMC Med ; 19(1): 32, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1052413

ABSTRACT

BACKGROUND: SARS-CoV-2 has induced a worldwide pandemic and subsequent non-pharmaceutical interventions (NPIs) to control the spread of the virus. As in many countries, the SARS-CoV-2 pandemic in Germany has led to a consecutive roll-out of different NPIs. As these NPIs have (largely unknown) adverse effects, targeting them precisely and monitoring their effectiveness are essential. We developed a compartmental infection dynamics model with specific features of SARS-CoV-2 that allows daily estimation of a time-varying reproduction number and published this information openly since the beginning of April 2020. Here, we present the transmission dynamics in Germany over time to understand the effect of NPIs and allow adaptive forecasts of the epidemic progression. METHODS: We used a data-driven estimation of the evolution of the reproduction number for viral spreading in Germany as well as in all its federal states using our model. Using parameter estimates from literature and, alternatively, with parameters derived from a fit to the initial phase of COVID-19 spread in different regions of Italy, the model was optimized to fit data from the Robert Koch Institute. RESULTS: The time-varying reproduction number (Rt) in Germany decreased to <1 in early April 2020, 2-3 weeks after the implementation of NPIs. Partial release of NPIs both nationally and on federal state level correlated with moderate increases in Rt until August 2020. Implications of state-specific Rt on other states and on national level are characterized. Retrospective evaluation of the model shows excellent agreement with the data and usage of inpatient facilities well within the healthcare limit. While short-term predictions may work for a few weeks, long-term projections are complicated by unpredictable structural changes. CONCLUSIONS: The estimated fraction of immunized population by August 2020 warns of a renewed outbreak upon release of measures. A low detection rate prolongs the delay reaching a low case incidence number upon release, showing the importance of an effective testing-quarantine strategy. We show that real-time monitoring of transmission dynamics is important to evaluate the extent of the outbreak, short-term projections for the burden on the healthcare system, and their response to policy changes.


Subject(s)
Basic Reproduction Number , COVID-19/epidemiology , Pandemics , COVID-19/transmission , Germany/epidemiology , Humans , Italy/epidemiology , Models, Statistical , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL